

DESIDRATAÇÃO OSMÓTICA SEGUIDA DE SECAGEM EM TÚNEL DE VENTO DA BETERRABA (Beta vulgaris)

Jéssica S. Ribeiro

Acadêmica do curso de engenharia química da Universidade Federal de Santa Maria jessicaribeiroeq@gmail.com

Carolina C. Macagnan

Acadêmica do curso de engenharia química da Universidade Federal de Santa Maria tucamacagnan@hotmail.com

Luiza N. Pinheiro

Acadêmica do curso de engenharia química da Universidade Federal de Santa Maria np.luiza@gmail.com

Martina S. Freitas

Acadêmica do curso de engenharia química da Universidade Federal de Santa Maria mahsprandel@hotmail.com

Susanne P. Druzian

Acadêmica do curso de engenharia química da Universidade Federal de Santa Maria susannedruzian@hotmail.com

Lisiane M. Terra

Professora Doutora do curso de engenharia química da Universidade Federal de Santa Maria lisianeterra@gmail.com

Resumo. A beterraba (Beta vulgaris) possui características de alimento funcional, contendo substâncias bioativas e pigmentos propriedades antioxidantes. realização de um processo de desidratação osmótica seguido de secagem em túnel de vento mostra-se como uma alternativa para obtenção de um produto que preserva suas características originais aumentando o tempo de conservação e vida útil. Tendo como objetivo definir as melhores condições de aplicação do processo, encontrou-se como condições ótimas a desidratação osmótica em solução de 50°Brix de sacarose cloreto de sódio(10:1) temperatura de 40°C por 2 horas, e secagem em túnel de vento com velocidade do ar de 2 m/s, temperatura superior a 75°C, por um período de tempo de 168,9 min.

Palavras-chave: Beterraba. Desidratação. Secagem.

1. INTRODUÇÃO

A beterraba (*Beta vulgaris*), hortaliça pertencente à família das Quenopodiáceas, possui características de alimento funcional, pois contém substâncias bioativas (licopeno) e pigmentos (carotenóides e flavonóides), que possuem propriedades antioxidantes e protegem contra doenças cardíacas, acidentes vasculares cerebrais, além de fortalecer o sistema imunológico (ARAUJO FILHO, 2008).

A secagem surge como alternativa para obtenção de um alimento funcional com boa estabilidade microbiológica deterioração em relação ao produto in natura, aumentando o tempo de conservação de vida útil. além facilitar armazenamento e transporte. O processo envolveu um pré-tratamento de desidratação osmótica e a secagem propriamente dita, com o propósito de maximizar a perda de água do alimento.

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013

10 a 13 de setembro de 2013 – Passo Fundo - RS

A desidratação osmótica é uma técnica aplicada para remover água de alimentos frescos, colocando-os em contato com uma solução concentrada de maior pressão osmótica. Este método é utilizado como um pré-tratamento na secagem de frutas e vegetais para maximizar a remoção de água e minimizar as perdas de componentes e características originais do alimento como cor, sabor e textura (GOMES et al, 2007).

Apesar do processo de desidratação osmótica alcançar significativa perda de água e redução da atividade de água no alimento, este processo sozinho não alcança o nível desejado de conservação do alimento. Então, se faz necessária a posterior utilização de um processo de secagem para alcançar os níveis desejados.

A secagem é um termo mais restrito utilizado para designar a desidratação por meio do emprego de ar aquecido. É um processo de transferência simultânea de calor e massa, onde é requerida energia para evaporar a umidade da superfície do produto para o meio externo, convencionalmente o ar (PARK, COLATO E OLIVEIRA, 2007).

A análise de parâmetros como a atividade da água ao final de cada processo permite a avaliação da viabilidade do processo como um todo e a definição da melhor rota de secagem para obtenção de um alimento funcional a partir da beterraba.

2. METODOLOGIA

Foram utilizadas beterrabas de raiz vermelha obtidas em um mercado local da cidade de Santa Maria, Estado do Rio Grande do Sul e selecionadas de acordo com critérios de grau de maturação avançado (aproveitamento de matéria-prima de menor custo), tamanho, forma e aparência saudável, fatiadas com espessura de 3mm.

2.1 Desidratação osmótica

A desidratação osmótica foi conduzida em um banho de 22 litros provido de agitação e utilizou como agente osmótico sacarose comercial (97%) e cloreto de sódio (3%), em solução.

A razão de massa de solução por massa do alimento foi de 10:1 e o tempo de imersão do alimento em solução de duas horas.

Através de um planejamento fatorial avaliou-se a influência das variáveis de entrada (temperatura e concentração da solução osmótica) sobre as variáveis respostas (perda de massa, perda de água, incorporação de sólidos, relação teor de sólidos solúveis e relação atividade de água).

Para tal avaliação aplicou-se um delineamento composto central rotacional (DCCR) com dois níveis originais, tendo assim 4 pontos fatoriais, 4 pontos axiais e 4 repetições do ponto central, e investigou o efeito da variação da temperatura (30 a 50°C) e da concentração da solução (40 a 60° Brix).

Ao final da desidratação, as fatias foram retiradas da solução e secas superficialmente com papel absorvente, para serem submetidas à secagem em túnel de vento.

2.2 Secagem em túnel de vento

Para a secagem foi utilizado um secador convectivo tipo túnel de vento, no qual as amostras foram colocadas em uma tela que ficava em suspensão no equipamento.

Primeiramente, foi estudada a cinética de secagem do produto desidratado osmoticamente neste equipamento, para melhor avaliar, projetar e otimizar o processo. Isto permitiu definir o intervalo de variação do novo DCCR, que teve como variáveis independentes: a velocidade do ar (0,60 a 2 m/s), a temperatura (45 a 75°C) e tempo de secagem (168,2 a 240 min),e as dependentes: porcentagem de massa perdida (redução de umidade) e redução de atividade da água, esta última medida no aparelho AquaLab.

3. RESULTADOS E DISCUSSÕES

3.1 Desidratação osmótica

Os modelos obtidos com parâmetros estatisticamente significativos (p<0,05) desenvolvidos para cada variável resposta a partir da regressão linear dos dados experimentais, utilizando o software Statistica 7.0, constam nas Eq. (1) a Eq. (4).

Perda de água = $63,1976 + 3,3485*C - 1,5683*C^2 + 1,0503*T - 0,4491*T^2 - 0,555*T*C (1)$

Incorporação de sólidos = $10,5900 + 1,4634*C - 0,2739*C^2 + 0,2610*T - 0,7115*T^2 + 1,1125*T*C(2)$

Relação atividade de água = $0.9337 - 0.0194*C + 0.0033*C^2 - 0.0050*T + 0.025*T^2 - 0.0085*T*C(3)$

Relação teor sólidos solúveis = $5.8421 + 0.5465*C - 0.7424*C^2 - 0.0125*T - 0.3803*T^2 + 0.18*T*C (4)$

Onde C corresponde à concentração de solução e T a temperatura, para valores das variáveis codificadas.

As Tabelas 1 e 2 mostram o efeito das variáveis independentes nas variáveis dependentes.

Tabela 1-Efeito das variáveis independentes na perda de massa (PM) e na perda de água

		(PA).		
Ensaio	C(°Brix)	T(°C)	%PM	%PA
1	42,91	32,91	52,39	55,78
2	42,91	47,09	55,78	60,67
3	57,09	32,91	57,19	62,75
4	57,09	47,09	58,47	65,42
5	40	40	52,12	54,79
6	60	40	59,93	65,42
7	50	30	59,13	62,04
8	50	50	57,8	62,62
9 (C)	50	40	63,92	66,67
10 (C)	50	40	63,73	66,12
11 (C)	50	40	53,12	59,61

12 (C)	50	40	55,28	60,39
12 (0)	50	70	33,20	00,57

Tabela 2-Efeito das variáveis de entrada na incorporação de sólidos (IS), relação teor de sólidos solúveis (RTSS) e relação de atividade de água (RAW)

attvidade de agua (KAW).					
Ensaio	Inc. sólidos	RTSS	RAw		
1	10,03	4,73	0,986		
2	7,57	3,89	0,981		
3	10,25	5,33	0,96		
4	12,24	5,21	0,921		
5	7,22	3,43	0,965		
6	12,03	5,16	0,916		
7	7,85	4,71	0,982		
8	9,66	5,32	0,985		
9 (C)	9,01	6,34	0,927		
10 (C)	9,73	6,59	0,925		
11 (C)	12,01	5,15	0,943		
12 (C)	11,62	5,29	0,94		

Analisando-se as tabelas anteriores, o ponto ótimo de operação do processo, em que se obteve maior perda de massa, perda de água e relação teor de sólidos solúveis, e menor incorporação de sólidos e relação atividade de água, foi obtido para uma concentração de 50 °Brix e 40 °C.

Na desidratação a 40 °C, um aumento da concentração da solução para 60 °Brix ocasionou uma diminuição da perda de massa, o que pode ter ocorrido como consequência da impregnação de sólidos na camada superficial das amostras de beterraba, o que dificulta a perda de massa (AZEREDO, 2000).

3.2 Secagem em túnel de vento

Os modelos obtidos com parâmetros estatisticamente significativos desenvolvidos para cada variável resposta a partir da regressão linear dos dados experimentais, utilizando o software Statistica 7.0, constam nas Eq. (5) e Eq. (6).

Perda de massa = $53,9961 + 0,7638*v + 1,5171*v^2 + 1,1145*t + 1,2827*t^2 +$

 $0.8241*T - 0.8056*T^2 - 0.4031*v*t - 2.6682*v*T - 1.7296*t*T (5)$

 $\begin{array}{lll} RAw &=& 0.466917 & + & 0.000281*v & - \\ 0.011919*v^2 + 0.031809*T + 0.023702*T^2 + \\ 0.043844*t - 0.003698*t^2 + 0.019438*v*T - \\ 0.001437*v*t - 0.029563*T*t (6) \end{array}$

Onde v corresponde à velocidade do ar no túnel de vento, t ao tempo de secagem e T a temperatura de secagem, para valores das variáveis codificadas.

A Tabela 3 apresenta os valores obtidos para variáveis dependentes na secagem em túnel de vento.

Tabela 3-Dados secagem em túnel de vento.

Tuocia	3 Dados	seeagem (citi tailei v	ae vento.
T(°C)	v (m/s)	t (min)	% PM	Aw
51,1	1,00	168,2	78,00	0,569
51,1	1,00	221,8	83,46	0,443
68,9	1,00	168,2	79,65	0,506
68,9	1,00	221,8	79,27	0,454
51,1	2,00	168,2	78,89	0,631
51,1	2,00	221,8	79,18	0,466
68,9	2,00	168,2	81,86	0,446
68,9	2,00	221,8	81,65	0,444
60,0	0,60	195,0	80,72	0,588
60,0	2,50	195,0	73,62	0,577
45,0	1,55	195,0	74,89	0,534
75,0	1,55	195,0	77,16	0,430
60,0	1,55	150,0	77,06	0,634
60,0	1,55	240,0	80,01	0,485
60,0	1,55	195,0	77,94	0,497
60,0	1,55	195,0	76,72	0,526
60,0	1,55	195,0	78,17	0,534

O ponto ótimo da análise das variáveis temperatura e tempo foi determinado como a região de sobreposição dos gráficos de redução de umidade e redução da atividade de água para uma mesma temperatura, levando às maiores reduções.

Quanto à velocidade do ar, o seu aumento é diretamente proporcional à perda de água, confirmando o esperado, porém inversamente proporcional à atividade de água. Combinando todas as variáveis, o ponto ótimo de secagem é obtido para velocidade média do ar de 2 m/s, temperatura próxima a 75°C por um período de 168,2 min.

4. CONCLUSÕES

O estudo mostrou a importância da desidratação osmótica realizada previamente à secagem em túnel de vento. Tal prétratamento auxiliou na perda de água inicial, contribuindo para a redução de atividade de água. O ponto ótimo para desidratação osmótica corresponde a uma concentração de 50°Brix, a uma temperatura de 40°C.

O processo de secagem se mostrou eficiente no que diz respeito à conservação do alimento, visto que em determinadas faixas de temperatura, tempo de exposição ao processo e velocidade do ar de convecção apresentou baixos valores de atividade de água, variável importante no que diz respeito a conservação de alimentos, objetivo deste trabalho.

5. REFERÊNCIAS

ARAUJO FILHO, D. G. Obtenção de produto farináceo a partir de beterrabas submetidas à secagem estacionária. 2008. 57 f. Tese (Mestrado em Agronomia) – UEPG, 2008.

AZEREDO, H. M. C.; JARDINE, J. G. Desidratação osmótica de abacaxi aplicada a tecnologia de métodos combinados. **Ciência e Tecnologia de Alimentos**, v. 20, n. 1, p. 74-82, 2000.

GOMES, A.T.; CEREDA, M.P.; VILPOUX, O. Desidratação osmótica: uma tecnologia de baixo custo para desenvolvimento da agricultura familiar. **Revista Brasileira de Gestão e Desenvolvimento Regional,** v.3, n. 3, p. 212-226, 2007.

PARK, K.J.; COLATO, A.; OLIVEIRA, R.A. Conceitos de processos e equipamentos de secagem. Campinas, v. 1, 2007.

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013