

CARACTERIZAÇÃO DE AMPLIFICADORES OPERACIONAIS CMOS TOTALMENTE DIFERENCIAIS PARA PROCEDIMENTO DE PROJETO AUTOMÁTICO

Arthur Campos de Oliveira

Acadêmico do curso de Engenharia Elétrica da Universidade Federal do Pampa arthuroliveira@alunos.unipampa.edu.br

Lucas Compassi Severo

Professor/Pesquisador do curso de Engenharia Elétrica da Universidade Federal do Pampa lucas.severo@unipampa.edu.br

Alessandro Gonçalves Girardi

Professor/Pesquisador do curso de Engenharia Elétrica da Universidade Federal do Pampa

Resumo. Este artigo apresenta o projeto e caracterização de amplificadores operacionais em uma ferramenta de dimensionamento automático. A ferramenta usa Simulated Anneling como heurística de otimização e simulações elétricas para avaliação das soluções. A metodologia é baseada na minimização de uma função custo e um conjunto de restrições de modo a se dimensionar cada transistor do circuito. Um conjunto de testbenches padrão é implementado na ferramenta para se estimar os valores das especificações. Nesses testbenches é utilizado um circuito de realimentação de modo-comum (CMFB) ideal. Como exemplo, esse artigo apresenta a aplicação da abordagem para o projeto de um amplificador totalmente diferencial de um estágio em tecnologia XFAB 0.18 µm. resultados mostram Os que todas especificações requeridas foram atingidas em um tempo computacional razoável.

Palavras-chave: Projeto Analógico. Caracterização. CAD.

1. INTRODUÇÃO

Diferenciação de sinais vem sendo comumente usado em sistemas de áudio, transmissão de dados, e telefones durante anos por sua inerente resistência contra ruídos de fontes externas. Hoje, diferenciação de sinais vem se tornando popular em aplicações de aquisição de dados em alta-velocidade, onde as entradas de conversores analógico-digital são diferenciais (KARKI, 2001).

Nesse metodologia contexto. propõe apresentada neste artigo implementação do amplificador operacional totalmente diferencial em uma ferramenta de dimensionamento automático. O projeto do amplificador é feita utilizado um circuito de realimentação de modo-comum (CMFB) permitindo a ferramenta dimensionamento apenas do amplificador principal.

2. UCAF: FERRAMENTA DE DIMENSIONAMENTO AUTOMÁTICO DE CIRCUITOS INTEGRADOS ANALÓGICOS

A implementação deste trabalho é baseada UCAF. na ferramenta Essa ferramenta foi implementada em Matlab® e utiliza inteligência artificial para explorar o espaço de projeto de modo a encontrar soluções otimizadas. Essa soluções devem satisfazer algumas restrições de projeto e algumas especificações, como otimizar potência dissipada e área ocupada. A metodologia de projeto da ferramenta UCAF é baseada no fluxograma mostrado na Fig. 1. As entradas da ferramenta são a solução

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013

11 a 13 de setembro de 2013 – Passo Fundo - RS

inicial para o circuito, especificações de projeto sendo estas restrições ou objetivos, e os parâmetros de fabricação. Baseado nessas entradas, o algoritmo de otimização, neste caso o Simulated Anneling, fornece os valores para as variáveis do circuito. As variáveis no processo de dimensionamento são o comprimento do canal (L) e a largura (W) e as tensões ou correntes de polarização do circuito. Cada possível solução é avaliada baseada nas especificações do circuito. A partir dessa avaliação o método de otimização explora o espaço de projeto afim de encontrar soluções otimizadas.

Figura 1. Metodologia de projeto implementada na ferramenta UCAF.(SEVERO, 2012)

3. CARACTERIZAÇÃO DO AMPLIFICADOR TOTALMENTE DIFERENCIAL

Esta seção apresenta uma descrição dos testbenches implementados e o bloco do circuito de realimentação de modocomum (CMFB) idealizado implementados dimensionamento na ferramenta de automático UCAF. testbenches Os implementados são baseados (ALLEN, 2002) (GRAY, 2001) (GREGORIAN , 1986).

3.1 Testbenches Implementados

A ferramenta de dimensionamento automático usa diversos testbenches para estimar as especificações do circuito. Os valores estimados são obtidos através de simulação elétrica. A Fig. 2 mostra os testbenches implementados. A Fig. 2(a) mostra o testbenche para análise AC (domínio da frequência) é executada para

medir o ganho em baixas frequências (A_{v0}), o produto ganho-largura de banda (GBW) e a margem de fase (MF).

Para o ICMR e o Slew Rate, Figuras 2(a) e 2(b), respectivamente, se faz necessária a configuração do amplificador em ganho unitário. Para isso, os resistores da configuração apresentada devem ser iguais, ou seja, $R_{\circ} = R_{\rm f}$.

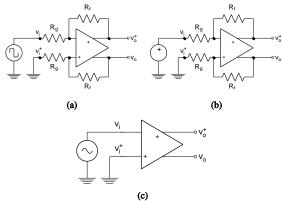


Figura 2. Testbenches implementados para o amplificador totalmente diferencial, (a) Slew Rate, (b) ICMR e (c) análise AC de malha aberta.

3.2 Realimentação de Modo-Comum

O principal problema de se projetar amplificadores totalmente diferenciais é o circuito de realimentação de modo-comum (CMFB). O circuito CMFB é um circuito de realimentação usado para manter a média das tensões de saída (saída de modo-comum) em uma referência. No entanto, essa circuito precisa comparar a tensão de modo-comum de saída com um valor de referência. Baseado nesta comparação, a referência de corrente do amplificador é aumentada ou diminuída. Diversos métodos de controle podem ser usados como circuito CMFB. A Fig. 3 apresenta o esquema do circuito CMFB ideal utilizado neste trabalho.

O bloco do sensor-CM (sensor de modo-comum) é composto por um detector de modo-comum, que calcula a média entre as tensões de saída do amplificador na

forma: $\frac{V_{o_+} + V_{o_-}}{2}$. Essa tensão é subtraída

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013

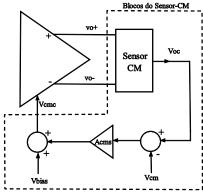


Figura 3. Bloco conceitual do CMFB.

da tensão de modo-comum desejada na saída, V_{cm} . A diferença entre a tensão de saída de modo-comum e seu valor desejado, $V_{oc}-V_{cm}$, é amplificada por um ganho A_{cms} . O valor resultante é somado com a tensão de polarização V_{bias} . O resultante é o V_{cmc} , onde

$$V_{cmc} = A_{cms} (V_{oc} - V_{cm}) + V_{bias} (1)$$

A entrada do controle de modocomum (CMC) é escolhida de forma que uma mudança em V_{cm} muda V_{oc} mas não afeta V_{od} (tensão diferencial de saída) se o circuito é perfeitamente balanceado (GRAY, 2001). Nesse trabalho, um circuito ideal que implementa a Eq. (1) é utilizado juntamente dos testbenches descritos na seção anterior.

4. RESULTADO DE PROJETO

Como exemplo da abordagem proposta, o projeto de um amplificador operacional CMOS totalmente diferencial em tecnologia XFAB 0.18 µm com tensão nominal de 1.8 V é apresentado. O esquemático do circuito é mostrado pela Fig. X. As fontes de alimentação V_{DD} e V_{SS} são 0.9 V e -0.9 V, respectivamente. Ambas capacitâncias de carga (C_L) são fixadas em 10 pF. Para este amplificador, a tensão de controle de modo-comum é o gate do transistor M5. Se o ganho do CMFB é alto, a

realimentação negativa força $V_{oc} \approx V_{cm}$ e V_{cmc} ser aproximadamente constante com $V_{cmc} \approx V_{bias}$. A tensão de polarização V_{bias} é somada para fornecer a componente DC de V_{cmc} que é define $|I_5| = |I_3| + |I_4|$ quando $V_{oc} = V_{cm}$ (GRAY, 2001). O CMFB ideal implementado tem influência apenas sobre a tensão no gate de M5, V_{B1} , tal que $V_{cmc} = V_{B1}$.

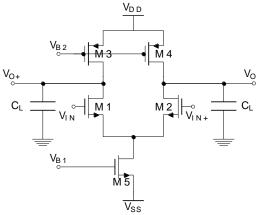


Figura 4. Esquemático do amplificador operacional totalmente diferencial.

Para o processo de otimização, o projeto tem os tamanhos dos transistores e a tensão de polarização como variáveis livres. Assim o projeto tem as seguintes variáveis livres: W_1 , L_1 , W_3 , L_3 , W_5 , L_5 , V_{B1} e V_{B2} . O procedimento de otimização usa o algoritmo Simulated Anneling heurística de otimização. As principais especificações para esse circuito são o ganho em baixas frequências (A_{v0}), slew rate (SR), margem de fase (MF) e faixa de entrada em modo-comum (ICMR). Os valores requeridos e obtidos para o projeto automático são mostrados na Tabela 1. A potência dissipada é definida como objetivo de projeto e as outras especificações são mantidas como restrições. Os tamanhos dos transistores obtidos para estes resultados são mostrados na Tabela 2.

Tabela 1. Resultados dos amplificadores e as especificações geradas

Especificações	Valores Requeridos	Valores Obtidos
A_{v0} (dB)	≥ 30	31.535
GBW (MHz)	≥ 1	1.023
MF(°)	≥ 50	91.46
SR $(V/\mu s)$	≥ 1.5	4.217
ICMR+(V)	≥ 70	0.51
ICMR- (V)	≥ 70	-0.888
$P_{diss}\left(\mu W\right)$	Minimizar	4.892
Tempo de		
Execução(s)	-	7080

Tabela 2. Tamanhos dos transistores para o amplificador projetado.

princular projetular.		
Valores Obtidos		
40.77/9.07		
6.54/9.14		
31.69/1;13		
250.64		
-384.78		

Os resultados mostram que todas as restrições foram satisfeitas e que a potência dissipada do circuito foi otimizada para 4.891 µW. O tempo de execução é de menos de 2 horas.

5. CONCLUSÕES

A metodologia proposta para o projeto e caracterização de amplificadores operacional totalmente diferencial apresentou bons resultados quando incluído em uma ferramenta de dimensionamento automático. A implementação não considera o dimensionamento do circuito CMFB para dimensionar o amplificador principal, o que fornece ao projetista a liberdade de escolher separadamente a topologia do CMFB para o amplificador. Como os resultados mostram que o amplificador opera adequadamente quando projeto com um circuito CMFB ideal. Em trabalhos futuros pretende-se projetar o circuito CMFB baseando-se nos dados obtidos pelo projeto com o circuito ideal, de modo que quando as entradas do CMFB forem iguais a tensão de saída deverá flutuar ao redor da tensão de controle de modo-comum.

Agradecimentos

Este trabalho foi financiado parcialmente pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), ao qual se deve o nosso agradecimento.

6. REFERÊNCIAS

KARKI, J. Fully-differential amplifiers, Analog Application, Technical Report. **Texas Instruments.** 2001.

ALLEN, P. E..; HOLBERG, D. R. CMOS Analog Circuit Design. Oxford University Press, 2nd Edition, 2002.

GRAY, P. R.; HURST, P. J.; LEWIS, S. H.; MEYER, R. G. Analysis and Design of Analog Integrated Circuits. New York: Wiley, 2001.

GREGORIAN, R.; TEMES, G. Analog MOS Integrated Circuits for Signal Processing. New York: Wiley, 1986.

SEVERO, L. C. Uma Ferramenta para o Dimensionamento Automático de Circuitos Integrados Analógicos Considerando Análise de Produtividade. Dissertação (Programa de pós-graduação em Engenharia Elétrica - PPGEE) — Universidade Federal do Pampa, Alegrete - RS, 2012.

OLIVEIRA, A. C.; SEVERO, L. C.; GIRARDI, A. G. Parallel characterization of operational amplifiers for acceleration of design optimization. In: 28th South Symposium on Microelectronics – SIM, Porto Alegre, 2013.

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013