ANÁLISE E COMPARAÇÃO DOS IMPACTOS GERADOS E PRODUÇÃO DE ENERGIA DE PEQUENAS E GRANDES HIDRELÉTRICAS

Ana Carolina Bertol

Acadêmica de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Maria aninha_bertol@hotmail.com

Andressa Paola Hubner

Acadêmica de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Maria dessa_hubner@hotmail.com

Jéssica Martini

Acadêmica de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Maria je_m4@hotmail.com

Nátalie de Paula

Acadêmica de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Maria nataliedepaula@hotmail.com

Taise Perondi

Acadêmica de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Maria taizperondi@hotmail.com

Aécio de Lima Oliveira

Professor do Departamento de Eletromecânica e Sistemas de Potência da UFSM

Resumo. Devido à matriz energética brasileira ser majoritariamente de recursos hídricos existência degrande preocupação com os impactos ambientais gerados pelas usinas hidrelétricas, diversos estudos vem sendo realizados para tentar entender em quais situações é benéfico e instalar lucrativo usinas nos rios brasileiros. A partir disso, neste trabalho serão comparadas três usinas hidrelétricas: Itaúba; Governador Leonel Brizola; e Ernestina, todas localizadas no Rio Grande do Sul, pertencentes à mesma bacia hidrográfica. Estas três usinas foram escolhidas por possuírem as mesmas características de relevo. Ao fim, foram comparadas as respectivas potências efetivas e áreas alagadas de cada usina, com intuito de fazer uma análise ambiental posterior, análise econômica. resultados obtidos foram favoráveis à construção de grandes usinas, contrariando estudos anteriores.

Palavras-chave: Recursos hídricos, Impactos Ambientais, Usinas Hidrelétricas.

1. INTRODUÇÃO

Devido à grande demanda energética mundial, tornou-se necessário desenvolvimento de energias a partir de fontes renováveis e limpas. Uma das alternativas encontradas foi à utilização da água para geração de energia, surgiram, então, as usinas hidrelétricas (UHE). No Brasil a energia hidráulica sempre foi dominante, uma vez que o país é um dos mais ricos do mundo em recursos hídricos (GOLDEMBERG & LUCON, 2007), isto porque possui grandes rios, geografia índices territorial adequada altos pluviométricos.

A hidroeletricidade é base do suprimento energético do Brasil (MÜLLER, 1995). Definimos uma usina hidrelétrica como um conjunto de obras e equipamentos cuja finalidade é a geração de energia elétrica através do aproveitamento do potencial hidráulico existente em um rio. A geração hidrelétrica está associada à vazão do rio e à altura de sua queda. Quanto maiores são os volumes de sua queda, maior

XXV CONGRESSO REGIONAL DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA EM ENGENHARIA – CRICTE 2013

10 a 13 de setembro de 2013 – Passo Fundo - RS

é seu potencial de aproveitamento na geração de eletricidade.

Segundo Goldemberg e Lucon (2007) a capacidade instalada de hidroeletricidade é de cerca de 70.000 MW e existem 433 usinas hidrelétricas em operação. Dessas, 23 tem capacidade maior que 1.000 MW e representam mais de 70% da capacidade total instalada. Existe ainda, um potencial hidroelétrico, de cerca de 190.000 MW, ainda não utilizados na região norte do país. Ainda que a geração hidrelétrica seja sustentável, algumas regiões atingidas para que ela fosse gerada tiveram, em lugar de desenvolvimento, retrocesso insustentável (MÜLLER, 1995). A instalação de usinas hidrelétricas pode provocar impactos ambientais e sociais ao longo do espaço físico ocupado.

Os impactos ambientais em usinas hidrelétricas são variados e são decorrentes de processos físicos e biológicos. Entre impactos físicos destacam-se: diminuição da correnteza; alteração na temperatura; pouca mistura na água do ambiente represado, deixando a água em condições anóxicas e favorecendo a eutrofização. Os biológicos estão relacionados à barreira física que a barragem representa para espécies aquáticas, pois ela isola as populações e dificulta a piracema. As alterações no rio afetam tanto regiões a montante quanto a jusante da barragem, e afetam a biodiversidade do rio. Há também os impactos antropocêntricos da instalação da usina. Essas mudanças afetem as sociedades organizadas vizinhas ao projeto. Mesmo sendo efeitos subjetivos devem ser considerados e analisados.

Segundo Perius e Carregaro (2012) a PCH (pequena central hidroelétrica) apresenta-se como uma das sugestões mais viáveis no que diz respeito a redução de impactos ambientais, pois as alterações no curso natural do rio e a área alagada por sua barragem são consideravelmente menores daquelas observadas nas grandes usinas hidroelétricas. Sendo assim, o objetivo deste

trabalho é definir se os impactos ambientais e econômicos, gerados pela produção de energia em pequenas e grandes hidrelétricas no Brasil são compensados pela sua produção hidroelétrica. Para a obtenção de resultados comparativos foram utilizadas as usinas hidrelétricas de Itaúba, Governador Leonel de Moura Brizola e Ernestina. A escolha dessas usinas se justifica devido ao fato destas pertencerem à mesma bacia hídrica, o rio Jacuí, e que elas diferem na sua classificação. Sendo que duas delas, Itaúba e Gov. Leonel Brizola são classificadas como Grandes Centrais Hidrelétricas e a Usina Hidrelétrica Ernestina é classificada como uma Pequena Central Hidrelétrica.

1.1 Usina hidrelétrica de Itaúba

A UHE Itaúba, com 500 MW de potência instalada, é classificada como uma Grande Central Hidrelétrica (GCH). É de propriedade do grupo CEEE (Companhia Estadual de Energia Elétrica), foi inaugurada em 1978 e está localizada no rio Jacuí, no município brasileiro de Estrela Velha no estado do Rio Grande do Sul (RS).

Segundo o Plano de uso e ocupação do solo no entorno do reservatório da UHE Itaúba, esta usina é o quarto aproveitamento do Rio Jacuí a contar da nascente. Sua barragem está a 39 km a jusante da UHE Gov. Leonel Brisola e a 40 km a montante da UHE Dona Francisca. A usina possui quatro unidades geradoras de 125 MW. A barragem do Reservatório Itaúba, com 97 m de altura, é do tipo gravidade enrocamento (maciço composto por blocos de rochas compactados) com núcleo forma reservatório argila O de regularização semanal, com aproximadamente 13,29 km² de área e perímetro de 140,55 km, com um desnível de aproximadamente 90 m.

1.2 Usina hidrelétrica Governador Leonel de Moura Brizola

A usina Governador Leonel de Moura Brizola (ex-Usina Hidrelétrica do Jacuí) tem potência efetiva de 180 MW e é classificada como uma GCH. Localiza-se na porção centro-norte do RS e se insere no território do município de Salto do Jacuí, é de propriedade da CEEE.

Segundo o Plano de uso e ocupação do solo no entorno do reservatório Maia Filho, a UHE Gov. Leonel de Moura Brizola é o terceiro aproveitamento do Rio Jacuí, a contar da nascente. O projeto aproveitou o desnível existente na cachoeira de Salto Grande, através de um reservatório de regularização semanal, Engenheiro Maia Filho. Do reservatório, a água é desviada por um túnel que corta o espigão que o rio contorna com uma grande volta em forma de ferradura. A barragem do Reservatório Eng. Maia Filho está, por via fluvial, 12 km a iusante de Passo Real, e a 9 km a montante da sua Usina e 48 km a montante da UHE Itaúba.

A Usina possui seis grupos geradores de 30 MW, com adução realizada por túnel de 1.200 m de comprimento e nove metros de diâmetro. A barragem, de concreto armado, forma um reservatório de aproximadamente 4,43 km² de área, perímetro de 32,88 km e possui dezessete comportas. A Bacia Hidrográfica do Rio Jacuí, em Maia Filho, possui uma área de 8.000 km² e não recebe nenhum afluente no trecho até o Reservatório Passo Real.

1.3 Usina hidrelétrica Ernestina

A usina hidrelétrica de Ernestina, inaugurada em 1957, tem potência efetiva de 3,7 MW e é classificada como uma Pequena Central Hidrelétrica (PCH). É propriedade da CEEE e localiza-se na porção centronorte do RS. O Reservatório Ernestina, se insere no território de cinco municípios:

Ernestina, Ibirapuitã, Marau, Nicolau Vergueiro e Tio Hugo.

Segundo o Plano de uso e ocupação do solo no entrono do reservatório da UHE Ernestina, a usina é o primeiro aproveitamento do Rio Jacuí a contar de sua nascente. Possui uma unidade geradora com turbina do tipo Francis e potência efetiva de 3,7 MW. Possui uma área alagada de 5.737 hectares.

A porção da bacia hidrográfica do Rio Jacuí que contribui para a formação dos reservatórios, possui uma área de 840 km². O projeto aproveitou o desnível da cachoeira de Ernestina, através de um reservatório de regularização anual, com 38,50 km² e perímetro de 162,45 km. Utiliza-se de uma barragem do tipo concreto protendido com 13 m de altura e 400 m de comprimento.

2. METODOLOGIA

Para a análise e comparação dos impactos gerados e produção de energia de pequenas e grandes hidrelétricas foram escolhidas as Usinas Hidrelétricas localizadas na mesma bacia hidrografia para que o relevo não interfira na diferença do total de área alagada. Já que através da área total alagada, podem ser representadas partes dos inúmeros impactos ambientais causados pelas usinas. É feita então a classificação das usinas hidrelétricas escolhidas conforme o potencial de geração.

De acordo com a Resolução n° 394 de 04/12/1998 da ANEEL, PCHs correspondem a empreendimentos hidrelétricos com potencia superior a 1000 kW e igual ou inferior a 30000 kW, com área de reservatório igual ou inferior a 3 km². Grandes Centrais Hidrelétricas são as que operam com potenciais acima de 30.000 kW. O princípio de funcionamento para PCH's e GCH's é o mesmo: a água, armazenada em um reservatório (represa), passa pela turbina fazendo-a girar. A turbina por sua vez, está acoplada a um gerador que transforma a energia da turbina em energia elétrica.

Com os dados de potência total e área total alagada referentes às usinas hidroelétricas escolhidas, será discutido se uma GCH compensa seus impactos ambientais com sua alta potência efetiva, ou se é mais viável ter PCHs.

3. RESULTADOS E DISCUSSÕES

As tabelas (1 e 2) abaixo apresentam os dados de potência efetiva e área alagada das usinas hidrelétricas analisadas.

Tabela 1. GCH Itaúba x PCH Ernestina

	Itaúba	Ernestina
Potência efetiva	500 MW	3,7 MW
Área alagada	13,29 Km ²	38,5 Km ²

A potência efetiva da UHE Itaúba é cerca de 135 vezes maior que a potência efetiva da UHE Ernestina, entretanto esta apresenta uma área alagada aproximadamente 2,89 vezes maior do que a área alagada de Itaúba. Apesar de ser classificada como uma PCH, a UHE Ernestina, que produz apenas 0,74% da potência gerada pela UHE Itaúba, a sua área total alagada é 189% maior que a encontrada em Itaúba.

Tabela 2. GCH L. Brizola x PCH Ernestina

	L. Brizola	Ernestina
Potência efetiva	180 MW	3,7 MW
Área alagada	4,43 Km ²	38,5 Km ²

A potencia efetiva da Usina Hidrelétrica Gov. Leonel Brizola é cerca de 48 vezes maior que a potencia efetiva da Usina hidrelétrica Ernestina, entretanto a Usina Hidrelétrica Ernestina apresenta uma área alagada aproximadamente 8,7 vezes maior do que a área alagada da UHE Gov. Leonel Brizola. Assim, a UHE Ernestina produz 2,0% do potencial hidrelétrico total da UHE Gov. Leonel Brizola, e a área total alagada pela ultima representa apenas 11,5% do total da área alagada pela UHE Ernestina.

4. CONCLUSÃO

Resultados encontrados na literatura, como Perius e Carregaro (2012) a PCH apresenta-se como uma das sugestões mais viáveis no que diz respeito à redução de impactos ambientais, pois as alterações no curso natural do rio e a área alagada por sua barragem são consideravelmente menores daquelas observadas nas grandes usinas hidroelétricas. Entretanto, nas usinas hidrelétricas escolhidas, as comparações entre uma PCH e duas GCH demonstraram que a área alagada por uma PCH foi consideravelmente maior quando comparado com a área alagada por GCH, e este resultado repetiu-se duas vezes.

Assim, por mais que Pequenas Centrais Hidrelétricas sejam consideradas vantajosas, no caso da Bacia Hidrográfica do Rio Jacuí, uma PCH se mostrou pouco eficiente.

5. REFERÊNCIAS

CEEE, Plano de Uso e Ocupação do solo no entorno do Reservatório Maia Filho-UHE Governador Leonel De Moura Brizola, 2010

CEEE, Plano de Uso e Ocupação do solo no entorno do Reservatório da UHE Ernestina, 2010

CEEE, Plano de Uso e Ocupação do solo no entorno do Reservatório da UHE Itaúba, 2010

GOLDEMBERG, J. LUCON, O. Energia e meio ambiente no Brasil, Estudos avançados, Brasil: Scielo, 2007.

MÜLLER, A. C. **Hidrelétricas, Meio Ambiente e Desenvolvimento.** São Paulo: Makron Books, 1995.

PERIUS, M. R; CARREGARO, J. B. Pequenas Centrais Hidrelétricas como forma de redução de impactos ambientais e crises energéticas. Ensaios e Ciência, vol. 16, n° 2, 2012.